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In recent years, the Helmholtz resonator and membrane are two popular elements that
have been vastly employed in the design of energy harvesters and metamaterials. In this
paper, a theoretical study of the modelling of the membrane-coupled Helmholtz resonator
is presented. The membrane is first represented with lumped parameters as a single-
degree-of-freedom piston/centre-mass model. The physical meaning of the effective
force-bearing area is explained. The membrane-coupled Helmholtz resonator is then mod-
elled as a multiple-degree-of-freedom system. From the acoustic-mechanical interaction
perspective, transformation coefficients are derived to bridge the acoustic and mechanical
domains. Inspired by the fact that the membrane-coupled Helmholtz resonator exhibits
multiple resonances in the low frequency regime, an acoustic metamaterial system is pro-
posed by integrating the membrane-coupled Helmholtz resonators. A theoretical model of
the proposed acoustic metamaterial is developed and multiple band gaps are predicted
from the band structure analysis. All the theoretical models presented in this paper have
been verified by corresponding finite element models.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The Helmholtz resonator is a very classic acoustic system that has been extensively studied decades ago [1,2]. In recent
years, with the flourishing development on the research of energy harvesting and metamaterials, Helmholtz resonators are
being vastly used in the design of acoustic energy harvesters [3–6] for sound augmentation and acoustic metamaterials [7–
11] for noise attenuation. Horowitz et al. [3] proposed an acoustic energy harvester consisting of a Helmholtz resonator
whose bottomwas a circular diaphragm integrated with a piezoelectric ring. The entire systemwas represented by an equiv-
alent circuit model with three degrees of freedom. From the simulated results, two resonant peaks were observed. A similar
multiple-degree-of-freedom Helmholtz resonator model was studied by Liu et al. [12]. They presented a more detailed mod-
elling procedure of the acoustic-mechanical system with lumped parameters. Afterwards, they employed that model for
acoustic energy harvesting [13]. Yang et al. [4] designed a Helmholtz resonator with a compliant top plate onto which
two piezoelectric beams were bonded. The experimental study showed that the proposed system could achieve an enhanced
broadband energy harvesting ability. Matova et al. [14] placed a piezoelectric energy harvester inside of a Helmholtz res-
onator for harvesting energy from airflow. Their experimental results revealed that a Helmholtz resonator with a membrane
bottom could achieve a better performance than that with a rigid bottom. Peng et al. [15] presented an acoustic energy
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harvester with a dual Helmholtz resonator architecture. The proposed system possessed three degrees of freedom and three
peaks were captured in the voltage frequency responses. More related work on the use of Helmholtz resonators and/or mem-
branes for energy harvesting can be referred to [5,16–19].

Regarding the application of Helmholtz resonator in the design of metamaterials, Fang et al. [7] presented an early study
of an acoustic metamaterial consisting of an array of subwavelength Helmholtz resonators. Their experimental results
matched well with the theoretical calculation based on the homogenized-media theory. For the same model, Wang et al.
[9] presented a systematic theoretical study. By using the interface response theory, they calculated the band structures,
transmission spectra, and defect states of such kind of metamaterial. Li et al. [8] proposed an acoustic metamaterial with
a coupled Helmholtz resonator configuration. They achieved near-total absorption at the central frequency. Other related
studies on the similar metamaterial model can be referred to [10,11].

In recent years, membrane-type acoustic metamaterials have also attracted lots of research interests [20–22], since they
can achieve acoustic attenuation at a deep sub-wavelength scale. Yang et al. [22] proposed an acoustic metamaterial com-
prising two coupled membranes. It was proved that the proposed metamaterial could exhibit broadband double negativity.
Li et al. [23] designed a membrane-type metamaterial that was capable of both sound insulation and energy harvesting. Gao
et al. [24] studied a membrane acoustic metamaterial, wherein the membrane was attached with an annular rigid ring. The
low frequency band gap behaviour in the proposed metamaterial was observed and the sound transmission loss of the sys-
tem was investigated.

From the literature review, it can be found that both Helmholtz resonator and membrane are two popular elements that
have been widely employed in the design of energy harvesting systems and metamaterials in recent years. Moreover, several
recent literature proposed and explored the idea of using membrane to design controllable/adaptive Helmholtz resonators
[25–27]. Though vast efforts for modelling of Helmholtz resonators and membranes have been reported, there lacks a sys-
tematic study on the modelling of the coupled system combining them and being integrated into acoustic metamaterials. In
this paper, we start from the modelling of the membrane. For simplifying the modelling process, two single-degree-of-
freedom (SDOF) models, i.e., piston model and centre-mass model, are proposed to predict the dynamic behaviour of the
membrane. The equivalent lumped parameters of the two SDOF models are analytically derived. The significance of distin-
guishing the effective force-bearing area and the actual membrane area is discussed in details. The accuracy of the proposed
models is verified by the finite element analysis (FEA). Subsequently, the membrane is combined with the Helmholtz res-
onator to form an acoustic-mechanical coupled multiple-degree-of-freedom (MDOF) system. The acoustic-mechanical cou-
pling issue is addressed to bridge the two domains. The transformation coefficients are derived for the cases when the
membrane is represented by the piston model and the centre-mass model, respectively. The developed MDOF model is then
verified by FEA. Finally, an acoustic metamaterial system integrated with the membrane-coupled Helmholtz resonator is
proposed. On the basis of the derived MDOF models for the membrane-coupled Helmholtz resonator, the theoretical model
for the proposed acoustic metamaterial system is developed. The band structure analysis based on the theoretical model is
also confirmed by FEA.
2. SDOF representation for membrane

2.1. Distributed parameter model

Fig. 1 shows the schematic of a circular membrane of radius a, uniform areal density qa and tension Ts. A polar coordinate
system with the origin at the circular membrane centre is utilized to define the spatial location of the membrane.

The governing equation of motion of the circular membrane under forced axisymmetric vibration is expressed as [28]:
Fig. 1. A circular membrane in polar coordinate system.
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where w r; tð Þ describes the deflection of the membrane as a function of the radial position r and time t, c ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Ts=qa

p
, pa is the

uniform pressure distributed over the surface of the membrane, cd is viscous damping coefficient. Assuming a harmonic
pressure excitation pa ¼ Paejxt (j ¼

ffiffiffiffiffiffiffi
�1

p
) in which Pa is the amplitude of the pressure and using the modal superposition

method, the steady-state solution of the membrane deflection w r; tð Þ is assumed to be in the form as:
w r; tð Þ ¼
X1
n¼1

/n rð Þgn tð Þ ð2Þ
where gn tð Þ is the modal coordinate, /n rð Þ is the mode shape with the solution as:
/n rð Þ ¼ AJ0 knrð Þ ð3Þ

where A is an arbitrary constant, J0 xð Þ is the Bessel function of the first kind of order 0,kn ¼ xn=c and xn is the natural fre-
quency of the nth mode of the membrane. Since under the uniform pressure excitation, non-axisymmetric vibration motion
of the membrane can not be excited, only axisymmetric vibration modes of the membrane are considered and the ‘‘nth
mode” refers to the ‘‘nth axisymmetric mode” for short throughout the paper. Substituting Eq. (2) into Eq. (1), multiplying
by the mode shapes /n rð Þ, integrating over the radius (i.e., from 0 to a), and then using the orthogonality relations, the modal
governing equation can be obtained:
d2gn tð Þ
dt2

þ 2fnxn
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dt

þx2
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where fn ¼ cd=2qaxn. The modal response can then be obtained as:
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The displacement corresponds to the nth mode is:
wn r; tð Þ ¼ /n rð Þgn tð Þ ð6Þ

The displacement response of the membrane at an arbitrary position r from the centre is thus:
w r; tð Þ ¼
X1
n¼1

/n rð Þ
Pa
qa

R a
0 r/n rð Þdr

x2
n �x2 þ j2fnxnx

ejxt ð7Þ
2.2. SDOF model

To represent the membrane as a SDOF model around the nth mode, the kinetic energy of an infinitesimal annular element
corresponding to the displacement in the nth mode is:
dEkn ¼ 1
2

2pqardrð Þ @wn r; tð Þ
@t

� �2

ð8Þ
where wn r; tð Þ ¼ /n rð Þgn tð Þ can be expressed in the following form
wn r; tð Þ ¼ AnJ0
ln

a
r

� �
cos xntð Þ ð9Þ
where ln is the nth root to J0 lð Þ ¼ 0. The average kinetic energy over a period T of the infinitesimal annular element equals:
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Integrating over the radial direction from 0 to a yields the total kinetic energy of the entire membrane averaged over a
period:
Ekn

� �
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1 ln

� � ð11Þ
2.2.1. Piston model
In the first case, the membrane deformation is treated as a piston model, as shown in Fig. 2(a) and (b). To ensure that the

volume displacements of the membrane and equivalent piston are the same, the space-averaged deflection is taken as the
displacement of the piston:



Fig. 2. Schematics of (a) membrane deformation, (b) equivalent SDOF piston model, (c) equivalent SDOF centre-mass model.
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The kinetic energy of the piston averaged over a period is:
Ekn

� �
p ¼

1
T

Z T

0

Mp;n

2
d wn tð Þh i

dt

� �2

dt ¼ Mp;n

l2
n
A2
nx

2
nJ

2
1 ln

� � ð13Þ
where, Mp,n is the equivalent mass of the piston, which can be derived by equating Eq. (11) and Eq. (13):
Mp;n ¼ l2
n

4
pa2qa ð14Þ
The equivalent stiffness and the damping coefficient are Kp;n ¼ Mp;nx2
n and Dp;n ¼ 2fnMp;nx2

n , respectively. The equation of
motion for the piston model can then be expressed as:
Mp;n€yn tð Þ þ Dp;n _yn tð Þ þ Kp;nyn tð Þ ¼ Sp;npa tð Þ ð15Þ

where yn tð Þ ¼ wn tð Þh i. Note that the relationship between yn tð Þ and the displacement at the centre of the membrane wn 0; tð Þ
can be derived by using Eqs. (9) and (12) as:
yn tð Þ
wn 0; tð Þ ¼

2J1 ln

� �
lnJ0 0ð Þ ¼ bn ð16Þ
Sp;n is an undetermined parameter whose physical meaning is the effective force-bearing area, i.e., multiplying pa tð Þ by Sp;n
should give the effective force exerted onto the piston. From Eq. (15), one could derive the displacement response solution of
the piston:
yn tð Þ ¼ Sp;nPa

Mp;n x2
n �x2 þ j2fnxnx

� � ejxt ð17Þ
Sp;n could be determined through the comparison between Eq. (17) and the nth mode component of Eq. (7):
Sp;n ¼ Mp;n
2J1 ln

� �
lnJ0 0ð Þ

/n 0ð Þ R a
0 r/n rð Þdr
qa

ð18Þ
By inserting Eqs. (3) and (14) into Eq. (18), interestingly, it is found Sp;n ¼ S ¼ pa2, which implies that the effective force-
bearing area of the piston model is just the membrane area.

2.2.2. Centre-mass model
In the second case, we assume that the equivalent lumped parameters are concentrated at the membrane centre, as

shown in Fig. 2(c). Since the equivalent lumped mass is presumed to be at the membrane centre, its velocity, by differenti-
ating Eq. (9) and letting r = 0 is:
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The kinetic energy of the equivalent lumped mass averaged over a period is:
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where, Mc,n is The equivalent mass of the centre mass, which can be obtained by equating Eqs. (11) and (20).
Mc;n ¼ pa2qaJ
2
1 ln

� � ð21Þ

The equivalent stiffness and damping coefficient are Kc;n ¼ Mc;nx2

n and Dc;n ¼ 2fnMc;nx2
n , respectively. The governing

equation of the centre-mass model is written as:
Mc;n€un tð Þ þ Dc;n _un tð Þ þ Kc;nun tð Þ ¼ Sc;npa tð Þ ð22Þ

where un tð Þ ¼ wn 0; tð Þ is used to denote the displacement in the nth mode of the membrane centre for conciseness, Sc;n is an
undetermined parameter whose physical meaning is the effective force-bearing area for the nth mode of the membrane, i.e.,
multiplying pa tð Þ by should give the effective force exerted onto the equivalent mass at the membrane centre. From the Eq.
(22), one obtains the displacement response of the equivalent lumped centre-mass:
un tð Þ ¼ Sc;nPa

Mc;n x2
n �x2 þ j2fnxnx

� � ejxt ð23Þ
By comparing Eq. (23) with the nth mode component of Eq. (7), Sc;n can be derived as:
Sc;n ¼ Mc;n
/n 0ð Þ R a

0 r/n rð Þdr
qa

ð24Þ
Different from the piston model, the effective force-bearing area Sc,n of the centre-mass model is mode dependent and is
not equal to the membrane surface area S ¼ pa2. Table 1 lists the geometric and material parameters of an example mem-
brane under investigation.

The dimensionless parameter kc;n ¼ Sc;n=S
		 		 is defined to indicate the difference between the effective force-bearing area

Sc,n of the centre-mass model for the nth mode and the membrane surface area S ¼ pa2. For the membrane with the param-
eters listed in Table 1, Table 2 lists kc;n for different modes. It can be noted that for the centre-mass model, mistaking S ¼ pa2

for the effective force-bearing area Sc,n would cause a fatal error.

2.3. Finite element verification

To verify the proposed SDOF piston model and SDOF centre-mass model for representing the response of the membrane
around a certain mode, the commercial software COMSOL Multiphysics is utilized to develop the corresponding finite ele-
ment model for comparison. COMSOL Multiphysics provides a special module for performing membrane simulation. The
developed membrane model in COMSOL Multiphysics is shown in Fig. 3. The displacement of the outer edge of the mem-
brane is completely constrained. The membrane tension is implemented by applying an initial in-plane pre-stress.

For the membrane with the given parameters listed in Table 1, Fig. 4 compares the displacement responses at the mem-
brane centre from COMSOL, the piston model and the centre-mass model. It is worth mentioning that for the piston model,
the solution derived from Eq. (22), i.e, yn tð Þ corresponds to the space-averaged deflection of the membrane. To make yn tð Þ
comparable with the results from COMSOL and centre-mass model, it is necessary to use Eq. (16) to convert the space-
averaged deflection to the membrane centre displacement.

It can be seen from Fig. 4(a), the result from COMSOLmatches well with the results from the piston model and the centre-
mass model with the proper use of the derived effective force-bearing area Sc;1. The fundamental natural frequencies of the
COMSOL and piston/centre-mass models are 48.45 and 48.30 Hz, respectively. The maximum displacement amplitudes pre-
Table 1
Geometric and material parameters of the membrane under investigation.

Parameters Values

Membrane radius a 100 mm
Membrane density q 7850 kg/m3

Membrane thickness h 0.4 mm
Membrane areal density qa ¼ qh 3.14 kg/m2

Membrane tension Ts 500 N/m
Damping ratio fn 0.005



Table 2
kc;n for different modes.

Order of mode kc;n ¼ Sc;n=S
		 		

1st mode 0.432
2nd mode 0.123
3rd mode 0.063
4th mode 0.040

Fig. 3. Finite element model of the membrane in COMSOL Multiphysics.

Fig. 4. Comparison of the displacement responses at the membrane centre from COMSOL and the piston/centre-mass models around the (a) fundamental
natural frequency; (b) second natural frequency.
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dicted by the COMSOL and piston/centre-mass models are 5.5367 and 5.5395 mm, respectively. However, for the centre-
mass model, if S is mistaken for its effective force-bearing area in the calculation, a fatal error is produced in the result:
the maximum displacement amplitude is 12.8318 mm which is much larger than the authentic value 5.5367 mm due to
the overestimation of the effective force-bearing area.

Around the second natural frequency (Fig. 4(b)), it can be observed that the predictions from the piston and centre-mass
models are still in a good agreement with COMSOL simulation result. The second natural frequencies of the COMSOL and
piston/centre-mass models are 111.24 and 110.86 Hz, respectively. The peak amplitudes from the COMSOL and piston/
centre-mass models are 0.6989 and 0.6990 mm, respectively. For the same reason, if S is mistaken for effective force-
bearing area rather than Sc;2, a fatal error occurs in the prediction: the peak amplitude is 5.6690 mmwhich significantly devi-
ates from 0.6989 mm. Though only the responses near the fundamental and second natural frequencies are presented, it
should be mentioned that both the piston and centre-mass models could predict the dynamic behaviours of the membrane
for higher modes. It is also worth noting that the proposed models are valid only for predicting the axisymmetric motion of
the membrane.
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3. MDOF representation of membrane-coupled Helmholtz resonator

As it is well known that, in the low frequency regime, when the wavelength is much larger than the dimension of the
Helmholtz resonator, the Helmholtz resonator (Fig. 5(a)) can be modelled as a SDOF oscillating system. The equation of
motion of the equivalent SDOF model can be written as:
M1
_U1 þ R1U1 þ K1

Z
U1dt ¼ P1ejxt ð25Þ
where M1 ¼ qairhneck=Sneck is the equivalent mass. In consideration of the radiation effects at the two ends of the neck, the
equivalent mass should be corrected as M1 ¼ qair hneck þ 1:7rneckð Þ=Sneck [14]. K1 ¼ qairc

2
air

� �
=V is the equivalent stiffness, V

is the volume of the cavity, P1 is the incident pressure. U1 is the volume flow velocity in the neck. R1 is the equivalent damp-
ing coefficient. Since the bulk viscosity of air is very small [29], R1 is assumed to be very small and ignored in the following
case studies.

3.1. Acoustic-mechanical interaction

In this work, a Helmholtz resonator with the bottom surface being considered as a membrane (as shown in Fig. 5(b)) is
studied. When the study involves both acoustic and mechanical systems, it is necessary to consider their interaction (cou-
pling) effects. The principle of developing the model incorporating the interaction is by unifying different physical quantities
at the interaction interface based on the analogies between the acoustic and mechanical domains, which are briefly reviewed
in Table 3. The analogies to electrical quantities are also presented for later use to develop the equivalent circuit model of the
coupled acoustic-mechanical system.

3.1.1. Piston model
At the interface between the membrane and the acoustic field, if we simplified the membrane to a SDOF piston model

around nth mode and consider the definition of the mechanical impedance of the membrane and expressing the mechanical
quantities by acoustic quantities, the mechanical impedance ZMechanical and the acoustic impedance ZAcoustic can be related by:
ZMechanical ¼ Fn

vnh i ¼
P1S
Un=S

¼ S2
P1

Un
¼ S2|{z}

Np;n

ZAcoustic ð26Þ
where Fn is the force applied on the piston. As mentioned in Section 2.2, the equivalent force-bearing area in the piston
model is exactly S, thus Fn = P1S. vnh i is the mechanical flow quantity, i.e., the velocity of the piston (the space-averaged
velocity of the membrane). Therefore, the mechanical-acoustic transformation coefficient is
Np;n ¼ S2 ð27Þ
Fig. 5. (a) Schematic of a Helmholtz resonator; (b) schematic of a membrane-coupled Helmholtz resonator.

Table 3
Electro-Acoustic-Mechanical analogies.

Potential quantity Flow quantity

Electrical system Voltage Current
Mechanical system Force Velocity
Acoustic system Sound pressure Volume velocity
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which is actually the same as that for an exact piston, regardless of the order of mode.

3.1.2. Centre-mass model
Following the same procedure, we can obtain the mechanical-acoustic transformation relation could be obtained for the

centre-mass model:
Fig. 6.
first mo
ZMechanical ¼ Fn

vn
¼ P1Sc;n

vnh i=bn
¼ P1Sc;n

Un=Sð Þ=bn
¼ bnSSc;n

P1

Un
¼ bnSSc;n|fflfflffl{zfflfflffl}

Nc;n

ZAcoustic ð28Þ
where Fn is the force applied on the centre mass. Because the equivalent force-bearing area Sc,n depends on modes, Fn = P1Sc,n
is different if we simplified the membrane to a SDOF model in different modes. vn is the mechanical flow quantity, i.e., the
velocity of the centre mass (the velocity of the membrane centre). The mechanical-acoustic transformation coefficient for the
centre-mass model is
Nc;n ¼ bnSSc;n ð29Þ

It can be noted that an additional parameter bn (which has been defined in Eq. (16)) appears in the mechanical-acoustic

transformation relation equation for the centre-mass model. This is because the centre-mass model assumes that all the
equivalent parameters are concentrated at the membrane centre. When we convert the mechanical flow quantity vn into
the acoustic flow quantity Un, the centre velocity vn needs to be converted into the space-averaged velocity vnh i first with
the help of Eq. (16).

3.2. MDOF model

The mechanical quantities of the membrane have already been converted into equivalent acoustic quantities by using the
derived mechanical-acoustic transformation coefficients (Eqs. (27) and (29)). The equivalent lumped parameters of the
Helmholtz resonator (which are presented in Eq. (25)) are given out by numerous existing literature. It can be expected that
the coupling of the Helmholtz resonator and the membrane will constitute a MDOF system. We can either use piston model
or centre-mass model to represent the membrane and it turns out to give the same results, which will be proved in the fol-
lowing study.

By using the electro-acoustic-mechanical analogies and considering the volume flow balance at the acoustic-mechanical
interaction interface (an analogy to Kirchhoff’s current law), the equivalent circuit model of the membrane-coupled
Helmholtz resonator can be developed as shown in Fig. 6(a). The corresponding equivalent mechanical model of the
membrane-coupled Helmholtz resonator is shown in Fig. 6(b). The governing equation of this acoustic-mechanical system
can be written as:
M1
_U1 þ K1

R
U1 � U2ð Þdt ¼ P1ejxt

M2
_U2 þ D2U2 þ K2

R
U2dt þ K1

R
U2 � U1ð Þdt ¼ 0

(
ð30Þ
where M2 ¼ Mp;1=Np;1 ¼ Mc;1=Nc;1, K2 ¼ Kp;1=Np;1 ¼ Kc;1=Nc;1, D2 ¼ Dp;1=Np;1 ¼ Dc;1=Nc;1, U1 is the volume velocity of the air in
the neck of the Helmholtz resonator, U2 is the volume velocity of the air aroused by the membrane first mode vibration. In
this model, the Helmholtz resonator and the membrane are treated and represented by two DOFs, then coupled to form a
2DOF system. It is expected to predict the dynamic behaviour of the coupled system around its first two natural frequencies
by using Eq. (30). However, since the natural frequencies of the first two modes of the membrane are not separated far away,
(a) Equivalent circuit model and (b) equivalent mechanical model of the membrane-coupled Helmholtz resonator (2DOF model considering only the
de of the membrane).
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based on the principle of the modal superposition, it can be speculated that the modal contribution from the second mode of
the membrane will be not negligible as compared to that from the first mode in the response. For this reason, to improve the
accuracy, it is necessary to include more modes into consideration. Starting from the modal equation, i.e, Eq. (4), and recall-
ing that the actual response should be the superposition of all the modal responses, i.e., Eq. (7), it is not difficult to obtain the
following governing equation by including the second mode of the membrane.
Fig.
M1
_U1 þ K1

R
U1 � U2 � U3ð Þdt ¼ P1ejxt

M2
_U2 þ D2U2 þ K2

R
U2dt þ K1

R
U2 þ U3 � U1ð Þdt ¼ 0

M3
_U3 þ D3U3 þ K3

R
U3dt þ K1

R
U2 þ U3 � U1ð Þdt ¼ 0

8>><
>>: ð31Þ
where M3 ¼ Mp;2=Np;2 ¼ Mc;2=Nc;2,K3 ¼ Kp;2=Np;2 ¼ Kc;2=Nc;2,D3 ¼ Dp;2=Np;2 ¼ Dc;2=Nc;2, U3 is the volume velocity of the air
aroused by the membrane second mode vibration. The corresponding equivalent circuit of Eq. (31) is presented in Fig. 7.
It can be seen that by including the second mode of the membrane into account, the coupled system has three DOFs.
3.3. Finite element verification

Finite element analysis is performed using COMSOL Multiphysics to verify the MDOF models of the membrane-coupled
Helmholtz resonator. The developed finite element model is shown in Fig. 8 with the parameters listed in Table 4. The bot-
tom surface of the Helmholtz resonator is the membrane with the same parameters listed in Table 1.

Fig. 9 presents the predicted centre displacement responses of the membrane of membrane-coupled Helmholtz resonator
from COMSOL and MDOF models. The first two natural frequencies calculated by COMSOL are 33.549 and 83.569 Hz, respec-
tively, and the corresponding amplitudes of the first two peaks are 10.950 and 3.541 mm, respectively. From Fig. 9(a), it can
be found that when only the fundamental mode is used (i.e., Eq. (30)), the prediction by the piston model around the first
peak matches with the result from COMSOL: the fundamental natural frequency is 34.046 Hz and the amplitude of the first
peak is 11.37 mm. However, the prediction around the 2nd mode has an obvious deviation: the second natural frequency is
86.894 Hz and the amplitude of the second peak is 3.040 mm.When the first twomodes are taken into account (i.e., Eq. (31)),
7. Equivalent circuit model of the membrane-coupled Helmholtz resonator (3DOF model considering the first two modes of the membrane).

Fig. 8. Finite element model of the membrane-coupled Helmholtz resonator in COMSOL Multiphysics.



Table 4
Parameters of the Helmholtz resonator.

Parameter Value

Radius of the neck rneck 1.4 cm
Radius of the cavity rcav ity 10 cm
Length of the neck hneck 4 cm
Length of the cavity hcav ity 30 cm
Density of air qair 1.2 kg/m3

Sound speed cair 343 m/s

Fig. 9. Membrane centre displacement responses from COMSOL and developed MDOF models of membrane-coupled Helmholtz resonator: (a) membrane
represented by piston model; (b) membrane represented by centre-mass model.
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the second peak shows a better agreement with the result from COMSOL: the second natural frequency is 83.784 Hz and the
amplitude of the second peak is 3.605 mm, which is more consistent with the results from COMSOL. Moreover, the accuracy
of the prediction in terms of the first peak is also improved: the fundamental natural frequency is 33.906 Hz and the ampli-
tude of the first peak is 10.730 mm. The results of the centre-mass model (Fig. 9(b)) is exactly the same as those of the piston
model (Fig. 9(a)). However, it is noteworthy that if the acoustic-mechanical transformation coefficient Nc;1 of the centre-

mass model is mistaken by using S2, there could result in significant error in the prediction in terms of the first two natural
frequencies and the amplitudes of the first two peaks of the coupled system.

3.4. Further discussion

It is well known that the natural frequencies of a coupled system deviate from the natural frequencies of the independent
systems that constitute the coupled system [30]. If the natural frequencies of the membrane-coupled Helmholtz resonator
deviate from the fundamental natural frequency of the membrane, but are still at the same order of the fundamental natural
frequency and much smaller than the second natural frequency of the Helmholtz resonator, one can include more axisym-
metric modes of the membrane into consideration for improving the modelling accuracy. However, if the natural frequencies
of the membrane-coupled Helmholtz resonator deviate far away from the fundamental natural frequency of the Helmholtz
resonator, the proposed MDOF representation modelling method becomes invalid for predicting the dynamic behaviour of
the membrane-coupled Helmholtz resonator. Since the current method adopts the theory of simplifying the Helmholtz res-
onator as an SDOF system, higher-order mode vibrations of the Helmholtz resonator are essentially ignored. In summary, it
should be emphasized that the proposed MDOF representation method is only valid when the natural frequencies of the
membrane-coupled Helmholtz resonator are still of the same order of the fundamental natural frequency of the Helmholtz
resonator.

4. Acoustic metamaterial using membrane-coupled Helmholtz resonator

From the above study, it is noted that the membrane-coupled Helmholtz resonator generates multiple resonances in the
low frequency regime. Xiao et al. [31] proposed a metamaterial rod containing MDOF local resonators and achieved multiple
band gaps for forbidding longitudinal elastic wave propagation. Since the nature of sound is also a longitudinal wave and the
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sound wave equation has exactly the same mathematical form as the wave equation for longitudinal waves in a rod, it is
motivated to implement the MDOF membrane-coupled Helmholtz resonator in the design of an acoustic metamaterial for
achieving multiple band gaps. To distinguish the MDOF models of the membrane-coupled Helmholtz resonator (MCHR)
incorporating one mode or two modes of the membrane, they are referred to as 1-mode MDOF MCHR and 2-mode MDOF
MCHR, respectively.

4.1. Theoretical model

Fig. 10 shows the schematic of the proposed acoustic metamaterial system. The membrane-coupled Helmholtz resonators
are periodically arranged along a main duct at a constant spacing of d. The cross-section area of the main duct is S0. The wave
equation of the sound pressure p propagating in the main duct can be expressed as:
@2p
@x2

¼ 1
c2air

@2p
@t2

ð32Þ
Only the steady-state harmonic response is of interest. The time factor that applies to all the field variables can thus be
disregarded. The general solution of the pressure amplitude in the nth unit cell is assumed to be:
Pn xnð Þ ¼ Ancos axnð Þ þ Bnsin axnð Þ ð33Þ

where a ¼ x=cair . The wave speed is given by:
Vn xnð Þ ¼ An

jqaircair
sin axnð Þ � Bn

jqaircair
cos axnð Þ ð34Þ
At the intersection between the nth and (n + 1)th unit cells, the continuity condition yields:
Pnjxn¼d ¼ Pnþ1jxnþ1¼0

Unjxn¼d � Unþ1jxnþ1¼0 ¼
Pnþ1jxnþ1¼0

Znþ1

8<
: ð35Þ
where Znþ1 is the acoustic impedance of the (n + 1)th membrane-coupled Helmholtz resonator, Un ¼ VnS0 and Unþ1 ¼ Vnþ1S0
are the volume velocities in the nth and (n + 1)th unit cells, respectively. If the membrane-coupled Helmholtz resonator is
represented by the 1-mode MDOF model (Fig. 6(a)), then
Znþ1 ¼ j xM2 � K2

x

� �
k �j

K1

x

� �� �
þ jxM1 ð36Þ
If the membraned coupled Helmholtz resonator is represented by the 2-mode MDOF model (Fig. 7), then
Znþ1 ¼ j xM2 � K2

x

� �
kj xM3 � K3

x

� �
 �
k �j

K1

x

� �� �
þ jxM1 ð37Þ
By substituting Eqs. (33) and (34) into Eq. (35), the transfer matrix that relates the nth and (n + 1)th unit cells can be
obtained:
Anþ1

Bnþ1


 �
¼ T

An

Bn


 �
ð38Þ
where T ¼ H�1K, K ¼ cos adð Þ sin adð Þ
sin adð Þ �cos adð Þ


 �
and H ¼ 1 0

v �1


 �
, v ¼ qair cair

�jS0Znþ1
. On the other hand, by using the Bloch’s theorem,

the periodicity condition yields:
Fig. 10. Schematic of acoustic metamaterial using membrane-coupled Helmholtz resonators.



Fig. 12.
MCHR
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Anþ1

Bnþ1


 �
¼ ejqd

An

Bn


 �
ð39Þ
where q is the wavenumber. Therefore, a standard eigenvalue problem is obtained:
T� ejqdI
		 		 ¼ 0 ð40Þ
By sweeping x and simultaneously seeking the solution to q based on Eq. (40), one obtains the dispersion relation of the
proposed acoustic metamaterial system.
4.2. Finite element verification

Finite element analysis is performed using COMSOL Multiphysics to verify the developed model for the acoustic metama-
terial system. The parameters of the membrane-coupled Helmholtz resonator are the same as those used in the previous case
studies (Tables 1 and 4). With S0 ¼ 10 cm� 20 cm and d ¼ 100 cm, the finite element model is developed, as shown in
Fig. 11.

Fig. 12 compares the band structures of the proposed acoustic metamaterial system calculated by COMSOL and the devel-
oped theoretical model. For the theoretical results presented in Fig. 12(a) and (b), the membrane-coupled Helmholtz res-
onator are represented by the 1-mode and 2-modes MDOF models, respectively. The detailed band gap ranges from
COMSOL and theoretical models are listed in Table 5. It can be found that in terms of the first band gap in the low frequency
Fig. 11. Finite element model of the acoustic metamaterial system in COMSOL Multiphysics.

Band structures calculated by COMSOL and theoretical model with the membrane-coupled Helmholtz resonator described by: (a) 1-mode MDOF
model; (b) 2-mode MDOF MCHR model. Note that q* = q/p is the dimensionless wave number.



Table 5
Band gap ranges predicted by COMSOL and theoretical models.

Band gap Acoustic Metamaterial Model Lower bound Upper bound

1st band gap COMSOL model 30.79 Hz 43.02 Hz
Theoretical model with 1-mode MDOF MCHR 30.67 Hz 42.94 Hz
Theoretical model with 2-mode MDOFMCHR 30.51 Hz 42.91 Hz

2nd band gap COMSOL model 79.73 Hz 85.33 Hz
Theoretical model with 1-mode MDOF MCHR 81.77 Hz 86.17 Hz
Theoretical model with 2-mode MDOF MCHR 79.39 Hz 83.40 Hz

3rd band gap COMSOL model 115.90 Hz 116.2 Hz
Theoretical model with 1-mode MDOF MCHR N.A. N.A.
Theoretical model with 2-modes MDOF MCHR 114.80 Hz 115.20 Hz
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regime, the theoretical model using 1-mode or 2-mode MDOF MCHR models gives good prediction as compared to the
results from COMSOL. The model with 2-mode MDOF MCHR gives better prediction for the second band gap. In addition,
it is worth noting that for the theoretical result with 2-mode MDOF MCHR, because one more mode of the membrane is
taken into account, the third band gap can be predicted by the theoretical model (Fig. 12(b)), though a bit larger deviation
exists as compared to the result from COMSOL (Table 5). It can be speculated that by including more modes into consider-
ation, the prediction accuracy can be further improved and more band gaps could possibly be predicted. However, it is
important to note that the Helmholtz resonator itself is only treated as a SDOF. This treatment only validates in the low fre-
quency regime. Therefore, this theoretical method is only applicable for low frequency regime analysis.
5. Conclusions

This paper presents a theoretical study on the modelling of the membrane, the membrane-coupled Helmholtz resonator
with lumped parameters, and the acoustic metamaterial system integrated with the membrane-coupled Helmholtz res-
onators. Two SDOF models, i.e., piston model and centre-mass model, have been developed for predicting the dynamic beha-
viour of the membrane. The equivalent lumped parameters are derived and the difference in the effective force-bearing area
between the two models has been discussed. The piston and centre-mass models have been verified by the finite element
model. On the basis of the SDOF representation of the membrane, the membrane-coupled Helmholtz resonator is modelled
as a MDOF system. Transformation coefficients are introduced to consider the acoustic-mechanical interaction, thus bridging
the acoustic and mechanical domains. Finite element verification of the proposed MDOF models for describing the
membrane-coupled Helmholtz resonator has been provided. A novel acoustic metamaterial system integrated with the
membrane-coupled Helmholtz resonators is then proposed. The band structure analysis based on theoretical model and
finite element model shows that the proposed acoustic metamaterial system can produce multiple band gaps in the low fre-
quency regime. The models incorporating 2 modes of the membranes could improve the prediction in the dynamic response
of the membrane-coupled Helmholtz resonator and the band gap of the acoustic metamaterial system.
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